Search

Categories

    • categories-img Jacket, Women
    • categories-img Woolend Jacket
    • categories-img Western denim
    • categories-img Mini Dresss
    • categories-img Jacket, Women
    • categories-img Woolend Jacket
    • categories-img Western denim
    • categories-img Mini Dresss
    • categories-img Jacket, Women
    • categories-img Woolend Jacket
    • categories-img Western denim
    • categories-img Mini Dresss
    • categories-img Jacket, Women
    • categories-img Woolend Jacket
    • categories-img Western denim
    • categories-img Mini Dresss
    • categories-img Jacket, Women
    • categories-img Woolend Jacket
    • categories-img Western denim
    • categories-img Mini Dresss

Filter By Price

$
-
$

Dietary Needs

Top Rated Product

product-img product-img

Modern Chair

$165.00
product-img product-img

Plastic Chair

$165.00
product-img product-img

Design Rooms

$165.00

Brands

  • Wooden
  • Chair
  • Modern
  • Fabric
  • Shoulder
  • Winter
  • Accessories
  • Dress

Welcome and thank you for visiting us. For any query call us on 0799 626 359 or Email [email protected]

Offcanvas Menu Open

Shopping Cart

Africa largest book store

Sub Total:

Search for any Title

Self-restructuring in Fault Tolerant Architecture : Processor Arrays with Spares (SpringerBriefs in Computer Science)

By: Itsuo Takanami (Author)

Extended Catalogue

Ksh 10,250.00

Format: Paperback or Softback

ISBN-10: 9819615380

ISBN-13: 9789819615384

Collection / Series: SpringerBriefs in Computer Science

Collection Type: Publisher collection

Publisher: Springer Nature Switzerland AG

Imprint: Springer Nature Switzerland AG

Country of Manufacture: GB

Country of Publication: GB

Publication Date: Apr 17th, 2025

Publication Status: Active

Product extent: 114 Pages

Product Classification / Subject(s): Computer hardware

Choose your Location

Shipping & Delivery

Door Delivery

Delivery fee

Delivery in 10 to 14 days

  • Description

  • Reviews

Recently, high-speed and high-quality technologies for processing many kinds of information have become essential and will become more and more necessary in the future. For such needs, parallel computer systems composed of many processing elements (PEs) are used and it is important to make high reliable systems which is called "fault-tolerant computer systems". As VLSI technology has developed, the realization of parallel computer systems using multi-chip module (MCM) or wafer scale integration (WSI) has been considered so as to enhance the speed of the computers, decrease energy consumption and sizes, and so on. In such a realization, entire or significant parts of PEs and connections among them are connected or implemented on a board or wafer. Therefore, the reliability and/or yield of the system may become drastically low if there is no strategy for coping with faults or defects. In realizing such systems as well as parallel computer systems, in order to restore the correct computation capabilities of the systems with faults, it must be reconfigured appropriately using spare PEs so that the faulty PEs are eliminated from the computation paths by replacing faulty PEs with healthy spare PEs and the remaining healthy PEs maintain correct logical connectivity among them. Various strategies to reconfigure a faulty physical system into a fault-free target logical system are described in the literature. Some of these techniques employ very powerful reconfiguring systems that can repair a faulty processor array with almost certainty, even in the presence of clusters of multiple faults. However, the key limitation of these techniques is that they are executed in software programs to run on an external host computer and they cannot be designed and implemented efficiently within a system. If a faulty system can be self-reconfigured by a built-in circuit or network, the system down time is significantly reduced. Furthermore, the system will become more reliable when it is used in such environments that the fault information cannot be monitored externally and manual maintenance operations are difficult. This book concerns fault-tolerant systems consisting of many PEs, mainly mesh-connected processor arrays. A mesh-connected processor array is a kind of form of massively parallel computing systems which consist of hundreds of PEs and have regular and modular structures, small wiring length between PEs, and high scalabilities. Here, self-reconfiguration of processor systems with spares using built-in digital circuits are focused on and spare arrangements together with networks connecting among PEs and reconfiguration algorithms with digital circuits are described, considering the number of spares, reconfiguration algorithms and their hardware realizations (built-in circuits), etc. where spares are arranged on the sides or diagonal of arrays. The effectiveness of the systems is evaluated in terms of the survival rates (successfully reconfigured rates) for the number of faults, and the array reliabilities (successfully reconfigured probabilities under the condition that each PE is equally reliable).

Recently, high-speed and high-quality technologies for processing many kinds of information have become essential and will become more and more necessary in the future. For such needs, parallel computer systems composed of many processing elements (PEs) are used and it is important to make high reliable systems which is called "fault-tolerant computer systems". As VLSI technology has developed, the realization of parallel computer systems using multi-chip module (MCM) or wafer scale integration (WSI) has been considered so as to enhance the speed of the computers, decrease energy consumption and sizes, and so on. In such a realization, entire or significant parts of PEs and connections among them are connected or implemented on a board or wafer. Therefore, the reliability and/or yield of the system may become drastically low if there is no strategy for coping with faults or defects. In realizing such systems as well as parallel computer systems, in order to restore the correct computation capabilities of the systems with faults, it must be reconfigured appropriately using spare PEs so that the faulty PEs are eliminated from the computation paths by replacing faulty PEs with healthy spare PEs and the remaining healthy PEs maintain correct logical connectivity among them. Various strategies to reconfigure a faulty physical system into a fault-free target logical system are described in the literature. Some of these techniques employ very powerful reconfiguring systems that can repair a faulty processor array with almost certainty, even in the presence of clusters of multiple faults. However, the key limitation of these techniques is that they are executed in software programs to run on an external host computer and they cannot be designed and implemented efficiently within a system. If a faulty system can be self-reconfigured by a built-in circuit or network, the system down time is significantly reduced. Furthermore, the system will become more reliable when it is used in such environments that the fault information cannot be monitored externally and manual maintenance operations are difficult.

This book concerns fault-tolerant systems consisting of many PEs, mainly mesh-connected processor arrays. A mesh-connected processor array is a kind of form of massively parallel computing systems which consist of hundreds of PEs and have regular and modular structures, small wiring length between PEs, and high scalabilities. Here, self-reconfiguration of processor systems with spares using built-in digital circuits are focused on and spare arrangements together with networks connecting among PEs and reconfiguration algorithms with digital circuits are described, considering the number of spares, reconfiguration algorithms and their hardware realizations (built-in circuits), etc. where spares are arranged on the sides or diagonal of arrays. The effectiveness of the systems is evaluated in terms of the survival rates (successfully reconfigured rates) for the number of faults, and the array reliabilities (successfully reconfigured probabilities under the condition that each PE is equally reliable).


Get Self-restructuring in Fault Tolerant Architecture by at the best price and quality guranteed only at Werezi Africa largest book ecommerce store. The book was published by Springer Nature Switzerland AG and it has pages. Enjoy Shopping Best Offers & Deals on books Online from Werezi - Receive at your doorstep - Fast Delivery - Secure mode of Payment

Customer Reviews

Based on 0 reviews

Mind, Body, & Spirit