Search

Categories

    • categories-img Jacket, Women
    • categories-img Woolend Jacket
    • categories-img Western denim
    • categories-img Mini Dresss
    • categories-img Jacket, Women
    • categories-img Woolend Jacket
    • categories-img Western denim
    • categories-img Mini Dresss
    • categories-img Jacket, Women
    • categories-img Woolend Jacket
    • categories-img Western denim
    • categories-img Mini Dresss
    • categories-img Jacket, Women
    • categories-img Woolend Jacket
    • categories-img Western denim
    • categories-img Mini Dresss
    • categories-img Jacket, Women
    • categories-img Woolend Jacket
    • categories-img Western denim
    • categories-img Mini Dresss

Filter By Price

$
-
$

Dietary Needs

Top Rated Product

product-img product-img

Modern Chair

$165.00
product-img product-img

Plastic Chair

$165.00
product-img product-img

Design Rooms

$165.00

Brands

  • Wooden
  • Chair
  • Modern
  • Fabric
  • Shoulder
  • Winter
  • Accessories
  • Dress

Welcome and thank you for visiting us. For any query call us on 0799 626 359 or Email [email protected]

Offcanvas Menu Open

Shopping Cart

Africa largest book store

Sub Total:

Search for any Title

Photofunctional Zeolites : Synthesis, Characterization, Photocatalytic Reactions, Light Harvesting

By: Masakazu Anpo (Author) , Masakazu Anpo (Author) , Masakazu Anpo (Author) , Masakazu Anpo (Author) , Masakazu Anpo (Author) , Masakazu Anpo (Author) , Masakazu Anpo (Author) , Masakazu Anpo (Author) , Masakazu Anpo (Author) , Masakazu Anpo (Author) , Masakazu Anpo (Author) , Masakazu Anpo (Author) , Masakazu Anpo (Author) , Masakazu Anpo (Author) , Masakazu Anpo (Author) , Masakazu Anpo (Author) , Masakazu Anpo (Author) , Masakazu Anpo (Author) , Masakazu Anpo (Author) , Masakazu Anpo (Author) , Masakazu Anpo (Author) , Masakazu Anpo (Author) , Masakazu Anpo (Author) , Masakazu Anpo (Author) , Masakazu Anpo (Author) , Masakazu Anpo (Author) , Masakazu Anpo (Author) , Masakazu Anpo (Author) , Masakazu Anpo (Author) , Masakazu Anpo (Author) , Masakazu Anpo (Author) , Masakazu Anpo (Author) , Masakazu Anpo (Author) , Masakazu Anpo (Author) , Masakazu Anpo (Author) , Masakazu Anpo (Author) , Masakazu Anpo (Author) , Masakazu Anpo (Author) , Masakazu Anpo (Author) , Masakazu Anpo (Author) , Masakazu Anpo (Author) , Masakazu Anpo (Author) , Masakazu Anpo (Author) , Masakazu Anpo (Author) , Masakazu Anpo (Author) , Masakazu Anpo (Author) , Masakazu Anpo (Author)

Extended Catalogue

Ksh 27,500.00

Format: Hardback or Cased Book

ISBN-10: 1560728019

ISBN-13: 9781560728016

Publisher: Nova Science Publishers Inc

Imprint: Nova Science Publishers Inc

Country of Manufacture: US

Country of Publication: GB

Publication Date: Aug 15th, 2000

Publication Status: Active

Product extent: 236 Pages

Weight: 586.00 grams

Dimensions (height x width x thickness): 24.80 x 16.90 x 1.80 cms

Product Classification / Subject(s): Biochemical engineering
Industrial chemistry
Biochemical engineering
Industrial chemistry
Biochemical engineering
Industrial chemistry
Biochemical engineering
Industrial chemistry
Biochemical engineering
Industrial chemistry
Biochemical engineering
Industrial chemistry
Biochemical engineering
Industrial chemistry
Biochemical engineering
Industrial chemistry
Biochemical engineering
Industrial chemistry
Biochemical engineering
Industrial chemistry
Biochemical engineering
Industrial chemistry
Biochemical engineering
Industrial chemistry
Biochemical engineering
Industrial chemistry
Biochemical engineering
Industrial chemistry
Biochemical engineering
Industrial chemistry
Biochemical engineering
Industrial chemistry
Biochemical engineering
Industrial chemistry
Biochemical engineering
Industrial chemistry
Biochemical engineering
Industrial chemistry
Biochemical engineering
Industrial chemistry
Biochemical engineering
Industrial chemistry
Biochemical engineering
Industrial chemistry
Biochemical engineering
Industrial chemistry
Biochemical engineering
Industrial chemistry
Biochemical engineering
Industrial chemistry
Biochemical engineering
Industrial chemistry
Biochemical engineering
Industrial chemistry
Biochemical engineering
Industrial chemistry
Biochemical engineering
Industrial chemistry
Biochemical engineering
Industrial chemistry
Biochemical engineering
Industrial chemistry
Biochemical engineering
Industrial chemistry
Biochemical engineering
Industrial chemistry
Biochemical engineering
Industrial chemistry
Biochemical engineering
Industrial chemistry
Biochemical engineering
Industrial chemistry
Biochemical engineering
Industrial chemistry
Biochemical engineering
Industrial chemistry
Biochemical engineering
Industrial chemistry
Biochemical engineering
Industrial chemistry
Biochemical engineering
Industrial chemistry
Biochemical engineering
Industrial chemistry
Biochemical engineering
Industrial chemistry
Biochemical engineering
Industrial chemistry
Biochemical engineering
Industrial chemistry
Biochemical engineering
Industrial chemistry
Biochemical engineering
Industrial chemistry

Choose your Location

Shipping & Delivery

Door Delivery

Delivery fee

Delivery in 10 to 14 days

  • Description

  • Reviews

This new century will be an age in which humanity will strive for the recovery and preservation of a more natural environment and also for the establishment of clean and safe energy supply technologies. Up until now, environmental pollution and destruction on a global scale as well as the lack of sufficient clean energy have drawn great attention and concern to the vital need for totally new environmentally friendly, ecologically clean chemical technology, materials and processes -- the most important challenge facing chemical scientists for future generations. In this respect, zeolites offer very unique and interesting physicochemical properties such as a pore structure of a molecular scale, ion-exchange capabilities, a strong surface acidity and a unique internal surface topology. It would, therefore, be of great significance to develop well-defined molecular scale catalysts within zeolite cavities and frameworks which would lead to the design of more active and selective photofunctional and photocatalytic systems, particularly systems able to utilise the very abundant solar energy and convert them into safe and useful chemical energy. The central topics of this book is how to utilise photofunctional zeolites for applications in the recovery and preservation of our environment while, at the same time, trying to develop clean and safe energy supply technologies. A vital new era is emerging in the utilisation of the most limitless, clean and efficient energy source -- the sun by applying photofunctional materials. Research on photofunctional zeolites is only the beginning in the harvesting of this vast and powerful energy source not only to develop clean and safe photochemical processes and systems for industry but also to develop systems that can eliminate and cleanse the many devastating toxic agents that are polluting our environment.
This new century will be an age in which humanity will strive for the recovery and preservation of a more natural environment and also for the establishment of clean and safe energy supply technologies. Up until now, environmental pollution and destruction on a global scale as well as the lack of sufficient clean energy have drawn great attention and concern to the vital need for totally new environmentally friendly, ecologically clean chemical technology, materials and processes -- the most important challenge facing chemical scientists for future generations. In this respect, zeolites offer very unique and interesting physicochemical properties such as a pore structure of a molecular scale, ion-exchange capabilities, a strong surface acidity and a unique internal surface topology. It would, therefore, be of great significance to develop well-defined molecular scale catalysts within zeolite cavities and frameworks which would lead to the design of more active and selective photofunctional and photocatalytic systems, particularly systems able to utilise the very abundant solar energy and convert them into safe and useful chemical energy. The central topics of this book is how to utilise photofunctional zeolites for applications in the recovery and preservation of our environment while, at the same time, trying to develop clean and safe energy supply technologies. A vital new era is emerging in the utilisation of the most limitless, clean and efficient energy source -- the sun by applying photofunctional materials. Research on photofunctional zeolites is only the beginning in the harvesting of this vast and powerful energy source not only to develop clean and safe photochemical processes and systems for industry but also to develop systems that can eliminate and cleanse the many devastating toxic agents that are polluting our environment.
This new century will be an age in which humanity will strive for the recovery and preservation of a more natural environment and also for the establishment of clean and safe energy supply technologies. Up until now, environmental pollution and destruction on a global scale as well as the lack of sufficient clean energy have drawn great attention and concern to the vital need for totally new environmentally friendly, ecologically clean chemical technology, materials and processes -- the most important challenge facing chemical scientists for future generations. In this respect, zeolites offer very unique and interesting physicochemical properties such as a pore structure of a molecular scale, ion-exchange capabilities, a strong surface acidity and a unique internal surface topology. It would, therefore, be of great significance to develop well-defined molecular scale catalysts within zeolite cavities and frameworks which would lead to the design of more active and selective photofunctional and photocatalytic systems, particularly systems able to utilise the very abundant solar energy and convert them into safe and useful chemical energy. The central topics of this book is how to utilise photofunctional zeolites for applications in the recovery and preservation of our environment while, at the same time, trying to develop clean and safe energy supply technologies. A vital new era is emerging in the utilisation of the most limitless, clean and efficient energy source -- the sun by applying photofunctional materials. Research on photofunctional zeolites is only the beginning in the harvesting of this vast and powerful energy source not only to develop clean and safe photochemical processes and systems for industry but also to develop systems that can eliminate and cleanse the many devastating toxic agents that are polluting our environment.
This new century will be an age in which humanity will strive for the recovery and preservation of a more natural environment and also for the establishment of clean and safe energy supply technologies. Up until now, environmental pollution and destruction on a global scale as well as the lack of sufficient clean energy have drawn great attention and concern to the vital need for totally new environmentally friendly, ecologically clean chemical technology, materials and processes -- the most important challenge facing chemical scientists for future generations. In this respect, zeolites offer very unique and interesting physicochemical properties such as a pore structure of a molecular scale, ion-exchange capabilities, a strong surface acidity and a unique internal surface topology. It would, therefore, be of great significance to develop well-defined molecular scale catalysts within zeolite cavities and frameworks which would lead to the design of more active and selective photofunctional and photocatalytic systems, particularly systems able to utilise the very abundant solar energy and convert them into safe and useful chemical energy. The central topics of this book is how to utilise photofunctional zeolites for applications in the recovery and preservation of our environment while, at the same time, trying to develop clean and safe energy supply technologies. A vital new era is emerging in the utilisation of the most limitless, clean and efficient energy source -- the sun by applying photofunctional materials. Research on photofunctional zeolites is only the beginning in the harvesting of this vast and powerful energy source not only to develop clean and safe photochemical processes and systems for industry but also to develop systems that can eliminate and cleanse the many devastating toxic agents that are polluting our environment.
This new century will be an age in which humanity will strive for the recovery and preservation of a more natural environment and also for the establishment of clean and safe energy supply technologies. Up until now, environmental pollution and destruction on a global scale as well as the lack of sufficient clean energy have drawn great attention and concern to the vital need for totally new environmentally friendly, ecologically clean chemical technology, materials and processes -- the most important challenge facing chemical scientists for future generations. In this respect, zeolites offer very unique and interesting physicochemical properties such as a pore structure of a molecular scale, ion-exchange capabilities, a strong surface acidity and a unique internal surface topology. It would, therefore, be of great significance to develop well-defined molecular scale catalysts within zeolite cavities and frameworks which would lead to the design of more active and selective photofunctional and photocatalytic systems, particularly systems able to utilise the very abundant solar energy and convert them into safe and useful chemical energy. The central topics of this book is how to utilise photofunctional zeolites for applications in the recovery and preservation of our environment while, at the same time, trying to develop clean and safe energy supply technologies. A vital new era is emerging in the utilisation of the most limitless, clean and efficient energy source -- the sun by applying photofunctional materials. Research on photofunctional zeolites is only the beginning in the harvesting of this vast and powerful energy source not only to develop clean and safe photochemical processes and systems for industry but also to develop systems that can eliminate and cleanse the many devastating toxic agents that are polluting our environment.
This new century will be an age in which humanity will strive for the recovery and preservation of a more natural environment and also for the establishment of clean and safe energy supply technologies. Up until now, environmental pollution and destruction on a global scale as well as the lack of sufficient clean energy have drawn great attention and concern to the vital need for totally new environmentally friendly, ecologically clean chemical technology, materials and processes -- the most important challenge facing chemical scientists for future generations. In this respect, zeolites offer very unique and interesting physicochemical properties such as a pore structure of a molecular scale, ion-exchange capabilities, a strong surface acidity and a unique internal surface topology. It would, therefore, be of great significance to develop well-defined molecular scale catalysts within zeolite cavities and frameworks which would lead to the design of more active and selective photofunctional and photocatalytic systems, particularly systems able to utilise the very abundant solar energy and convert them into safe and useful chemical energy. The central topics of this book is how to utilise photofunctional zeolites for applications in the recovery and preservation of our environment while, at the same time, trying to develop clean and safe energy supply technologies. A vital new era is emerging in the utilisation of the most limitless, clean and efficient energy source -- the sun by applying photofunctional materials. Research on photofunctional zeolites is only the beginning in the harvesting of this vast and powerful energy source not only to develop clean and safe photochemical processes and systems for industry but also to develop systems that can eliminate and cleanse the many devastating toxic agents that are polluting our environment.
This new century will be an age in which humanity will strive for the recovery and preservation of a more natural environment and also for the establishment of clean and safe energy supply technologies. Up until now, environmental pollution and destruction on a global scale as well as the lack of sufficient clean energy have drawn great attention and concern to the vital need for totally new environmentally friendly, ecologically clean chemical technology, materials and processes -- the most important challenge facing chemical scientists for future generations. In this respect, zeolites offer very unique and interesting physicochemical properties such as a pore structure of a molecular scale, ion-exchange capabilities, a strong surface acidity and a unique internal surface topology. It would, therefore, be of great significance to develop well-defined molecular scale catalysts within zeolite cavities and frameworks which would lead to the design of more active and selective photofunctional and photocatalytic systems, particularly systems able to utilise the very abundant solar energy and convert them into safe and useful chemical energy. The central topics of this book is how to utilise photofunctional zeolites for applications in the recovery and preservation of our environment while, at the same time, trying to develop clean and safe energy supply technologies. A vital new era is emerging in the utilisation of the most limitless, clean and efficient energy source -- the sun by applying photofunctional materials. Research on photofunctional zeolites is only the beginning in the harvesting of this vast and powerful energy source not only to develop clean and safe photochemical processes and systems for industry but also to develop systems that can eliminate and cleanse the many devastating toxic agents that are polluting our environment.
This new century will be an age in which humanity will strive for the recovery and preservation of a more natural environment and also for the establishment of clean and safe energy supply technologies. Up until now, environmental pollution and destruction on a global scale as well as the lack of sufficient clean energy have drawn great attention and concern to the vital need for totally new environmentally friendly, ecologically clean chemical technology, materials and processes -- the most important challenge facing chemical scientists for future generations. In this respect, zeolites offer very unique and interesting physicochemical properties such as a pore structure of a molecular scale, ion-exchange capabilities, a strong surface acidity and a unique internal surface topology. It would, therefore, be of great significance to develop well-defined molecular scale catalysts within zeolite cavities and frameworks which would lead to the design of more active and selective photofunctional and photocatalytic systems, particularly systems able to utilise the very abundant solar energy and convert them into safe and useful chemical energy. The central topics of this book is how to utilise photofunctional zeolites for applications in the recovery and preservation of our environment while, at the same time, trying to develop clean and safe energy supply technologies. A vital new era is emerging in the utilisation of the most limitless, clean and efficient energy source -- the sun by applying photofunctional materials. Research on photofunctional zeolites is only the beginning in the harvesting of this vast and powerful energy source not only to develop clean and safe photochemical processes and systems for industry but also to develop systems that can eliminate and cleanse the many devastating toxic agents that are polluting our environment.
This new century will be an age in which humanity will strive for the recovery and preservation of a more natural environment and also for the establishment of clean and safe energy supply technologies. Up until now, environmental pollution and destruction on a global scale as well as the lack of sufficient clean energy have drawn great attention and concern to the vital need for totally new environmentally friendly, ecologically clean chemical technology, materials and processes -- the most important challenge facing chemical scientists for future generations. In this respect, zeolites offer very unique and interesting physicochemical properties such as a pore structure of a molecular scale, ion-exchange capabilities, a strong surface acidity and a unique internal surface topology. It would, therefore, be of great significance to develop well-defined molecular scale catalysts within zeolite cavities and frameworks which would lead to the design of more active and selective photofunctional and photocatalytic systems, particularly systems able to utilise the very abundant solar energy and convert them into safe and useful chemical energy. The central topics of this book is how to utilise photofunctional zeolites for applications in the recovery and preservation of our environment while, at the same time, trying to develop clean and safe energy supply technologies. A vital new era is emerging in the utilisation of the most limitless, clean and efficient energy source -- the sun by applying photofunctional materials. Research on photofunctional zeolites is only the beginning in the harvesting of this vast and powerful energy source not only to develop clean and safe photochemical processes and systems for industry but also to develop systems that can eliminate and cleanse the many devastating toxic agents that are polluting our environment.
This new century will be an age in which humanity will strive for the recovery and preservation of a more natural environment and also for the establishment of clean and safe energy supply technologies. Up until now, environmental pollution and destruction on a global scale as well as the lack of sufficient clean energy have drawn great attention and concern to the vital need for totally new environmentally friendly, ecologically clean chemical technology, materials and processes -- the most important challenge facing chemical scientists for future generations. In this respect, zeolites offer very unique and interesting physicochemical properties such as a pore structure of a molecular scale, ion-exchange capabilities, a strong surface acidity and a unique internal surface topology. It would, therefore, be of great significance to develop well-defined molecular scale catalysts within zeolite cavities and frameworks which would lead to the design of more active and selective photofunctional and photocatalytic systems, particularly systems able to utilise the very abundant solar energy and convert them into safe and useful chemical energy. The central topics of this book is how to utilise photofunctional zeolites for applications in the recovery and preservation of our environment while, at the same time, trying to develop clean and safe energy supply technologies. A vital new era is emerging in the utilisation of the most limitless, clean and efficient energy source -- the sun by applying photofunctional materials. Research on photofunctional zeolites is only the beginning in the harvesting of this vast and powerful energy source not only to develop clean and safe photochemical processes and systems for industry but also to develop systems that can eliminate and cleanse the many devastating toxic agents that are polluting our environment.
This new century will be an age in which humanity will strive for the recovery and preservation of a more natural environment and also for the establishment of clean and safe energy supply technologies. Up until now, environmental pollution and destruction on a global scale as well as the lack of sufficient clean energy have drawn great attention and concern to the vital need for totally new environmentally friendly, ecologically clean chemical technology, materials and processes -- the most important challenge facing chemical scientists for future generations. In this respect, zeolites offer very unique and interesting physicochemical properties such as a pore structure of a molecular scale, ion-exchange capabilities, a strong surface acidity and a unique internal surface topology. It would, therefore, be of great significance to develop well-defined molecular scale catalysts within zeolite cavities and frameworks which would lead to the design of more active and selective photofunctional and photocatalytic systems, particularly systems able to utilise the very abundant solar energy and convert them into safe and useful chemical energy. The central topics of this book is how to utilise photofunctional zeolites for applications in the recovery and preservation of our environment while, at the same time, trying to develop clean and safe energy supply technologies. A vital new era is emerging in the utilisation of the most limitless, clean and efficient energy source -- the sun by applying photofunctional materials. Research on photofunctional zeolites is only the beginning in the harvesting of this vast and powerful energy source not only to develop clean and safe photochemical processes and systems for industry but also to develop systems that can eliminate and cleanse the many devastating toxic agents that are polluting our environment.
This new century will be an age in which humanity will strive for the recovery and preservation of a more natural environment and also for the establishment of clean and safe energy supply technologies. Up until now, environmental pollution and destruction on a global scale as well as the lack of sufficient clean energy have drawn great attention and concern to the vital need for totally new environmentally friendly, ecologically clean chemical technology, materials and processes -- the most important challenge facing chemical scientists for future generations. In this respect, zeolites offer very unique and interesting physicochemical properties such as a pore structure of a molecular scale, ion-exchange capabilities, a strong surface acidity and a unique internal surface topology. It would, therefore, be of great significance to develop well-defined molecular scale catalysts within zeolite cavities and frameworks which would lead to the design of more active and selective photofunctional and photocatalytic systems, particularly systems able to utilise the very abundant solar energy and convert them into safe and useful chemical energy. The central topics of this book is how to utilise photofunctional zeolites for applications in the recovery and preservation of our environment while, at the same time, trying to develop clean and safe energy supply technologies. A vital new era is emerging in the utilisation of the most limitless, clean and efficient energy source -- the sun by applying photofunctional materials. Research on photofunctional zeolites is only the beginning in the harvesting of this vast and powerful energy source not only to develop clean and safe photochemical processes and systems for industry but also to develop systems that can eliminate and cleanse the many devastating toxic agents that are polluting our environment.
This new century will be an age in which humanity will strive for the recovery and preservation of a more natural environment and also for the establishment of clean and safe energy supply technologies. Up until now, environmental pollution and destruction on a global scale as well as the lack of sufficient clean energy have drawn great attention and concern to the vital need for totally new environmentally friendly, ecologically clean chemical technology, materials and processes -- the most important challenge facing chemical scientists for future generations. In this respect, zeolites offer very unique and interesting physicochemical properties such as a pore structure of a molecular scale, ion-exchange capabilities, a strong surface acidity and a unique internal surface topology. It would, therefore, be of great significance to develop well-defined molecular scale catalysts within zeolite cavities and frameworks which would lead to the design of more active and selective photofunctional and photocatalytic systems, particularly systems able to utilise the very abundant solar energy and convert them into safe and useful chemical energy. The central topics of this book is how to utilise photofunctional zeolites for applications in the recovery and preservation of our environment while, at the same time, trying to develop clean and safe energy supply technologies. A vital new era is emerging in the utilisation of the most limitless, clean and efficient energy source -- the sun by applying photofunctional materials. Research on photofunctional zeolites is only the beginning in the harvesting of this vast and powerful energy source not only to develop clean and safe photochemical processes and systems for industry but also to develop systems that can eliminate and cleanse the many devastating toxic agents that are polluting our environment.
This new century will be an age in which humanity will strive for the recovery and preservation of a more natural environment and also for the establishment of clean and safe energy supply technologies. Up until now, environmental pollution and destruction on a global scale as well as the lack of sufficient clean energy have drawn great attention and concern to the vital need for totally new environmentally friendly, ecologically clean chemical technology, materials and processes -- the most important challenge facing chemical scientists for future generations. In this respect, zeolites offer very unique and interesting physicochemical properties such as a pore structure of a molecular scale, ion-exchange capabilities, a strong surface acidity and a unique internal surface topology. It would, therefore, be of great significance to develop well-defined molecular scale catalysts within zeolite cavities and frameworks which would lead to the design of more active and selective photofunctional and photocatalytic systems, particularly systems able to utilise the very abundant solar energy and convert them into safe and useful chemical energy. The central topics of this book is how to utilise photofunctional zeolites for applications in the recovery and preservation of our environment while, at the same time, trying to develop clean and safe energy supply technologies. A vital new era is emerging in the utilisation of the most limitless, clean and efficient energy source -- the sun by applying photofunctional materials. Research on photofunctional zeolites is only the beginning in the harvesting of this vast and powerful energy source not only to develop clean and safe photochemical processes and systems for industry but also to develop systems that can eliminate and cleanse the many devastating toxic agents that are polluting our environment.
This new century will be an age in which humanity will strive for the recovery and preservation of a more natural environment and also for the establishment of clean and safe energy supply technologies. Up until now, environmental pollution and destruction on a global scale as well as the lack of sufficient clean energy have drawn great attention and concern to the vital need for totally new environmentally friendly, ecologically clean chemical technology, materials and processes -- the most important challenge facing chemical scientists for future generations. In this respect, zeolites offer very unique and interesting physicochemical properties such as a pore structure of a molecular scale, ion-exchange capabilities, a strong surface acidity and a unique internal surface topology. It would, therefore, be of great significance to develop well-defined molecular scale catalysts within zeolite cavities and frameworks which would lead to the design of more active and selective photofunctional and photocatalytic systems, particularly systems able to utilise the very abundant solar energy and convert them into safe and useful chemical energy. The central topics of this book is how to utilise photofunctional zeolites for applications in the recovery and preservation of our environment while, at the same time, trying to develop clean and safe energy supply technologies. A vital new era is emerging in the utilisation of the most limitless, clean and efficient energy source -- the sun by applying photofunctional materials. Research on photofunctional zeolites is only the beginning in the harvesting of this vast and powerful energy source not only to develop clean and safe photochemical processes and systems for industry but also to develop systems that can eliminate and cleanse the many devastating toxic agents that are polluting our environment.
This new century will be an age in which humanity will strive for the recovery and preservation of a more natural environment and also for the establishment of clean and safe energy supply technologies. Up until now, environmental pollution and destruction on a global scale as well as the lack of sufficient clean energy have drawn great attention and concern to the vital need for totally new environmentally friendly, ecologically clean chemical technology, materials and processes -- the most important challenge facing chemical scientists for future generations. In this respect, zeolites offer very unique and interesting physicochemical properties such as a pore structure of a molecular scale, ion-exchange capabilities, a strong surface acidity and a unique internal surface topology. It would, therefore, be of great significance to develop well-defined molecular scale catalysts within zeolite cavities and frameworks which would lead to the design of more active and selective photofunctional and photocatalytic systems, particularly systems able to utilise the very abundant solar energy and convert them into safe and useful chemical energy. The central topics of this book is how to utilise photofunctional zeolites for applications in the recovery and preservation of our environment while, at the same time, trying to develop clean and safe energy supply technologies. A vital new era is emerging in the utilisation of the most limitless, clean and efficient energy source -- the sun by applying photofunctional materials. Research on photofunctional zeolites is only the beginning in the harvesting of this vast and powerful energy source not only to develop clean and safe photochemical processes and systems for industry but also to develop systems that can eliminate and cleanse the many devastating toxic agents that are polluting our environment.
This new century will be an age in which humanity will strive for the recovery and preservation of a more natural environment and also for the establishment of clean and safe energy supply technologies. Up until now, environmental pollution and destruction on a global scale as well as the lack of sufficient clean energy have drawn great attention and concern to the vital need for totally new environmentally friendly, ecologically clean chemical technology, materials and processes -- the most important challenge facing chemical scientists for future generations. In this respect, zeolites offer very unique and interesting physicochemical properties such as a pore structure of a molecular scale, ion-exchange capabilities, a strong surface acidity and a unique internal surface topology. It would, therefore, be of great significance to develop well-defined molecular scale catalysts within zeolite cavities and frameworks which would lead to the design of more active and selective photofunctional and photocatalytic systems, particularly systems able to utilise the very abundant solar energy and convert them into safe and useful chemical energy. The central topics of this book is how to utilise photofunctional zeolites for applications in the recovery and preservation of our environment while, at the same time, trying to develop clean and safe energy supply technologies. A vital new era is emerging in the utilisation of the most limitless, clean and efficient energy source -- the sun by applying photofunctional materials. Research on photofunctional zeolites is only the beginning in the harvesting of this vast and powerful energy source not only to develop clean and safe photochemical processes and systems for industry but also to develop systems that can eliminate and cleanse the many devastating toxic agents that are polluting our environment.
This new century will be an age in which humanity will strive for the recovery and preservation of a more natural environment and also for the establishment of clean and safe energy supply technologies. Up until now, environmental pollution and destruction on a global scale as well as the lack of sufficient clean energy have drawn great attention and concern to the vital need for totally new environmentally friendly, ecologically clean chemical technology, materials and processes -- the most important challenge facing chemical scientists for future generations. In this respect, zeolites offer very unique and interesting physicochemical properties such as a pore structure of a molecular scale, ion-exchange capabilities, a strong surface acidity and a unique internal surface topology. It would, therefore, be of great significance to develop well-defined molecular scale catalysts within zeolite cavities and frameworks which would lead to the design of more active and selective photofunctional and photocatalytic systems, particularly systems able to utilise the very abundant solar energy and convert them into safe and useful chemical energy. The central topics of this book is how to utilise photofunctional zeolites for applications in the recovery and preservation of our environment while, at the same time, trying to develop clean and safe energy supply technologies. A vital new era is emerging in the utilisation of the most limitless, clean and efficient energy source -- the sun by applying photofunctional materials. Research on photofunctional zeolites is only the beginning in the harvesting of this vast and powerful energy source not only to develop clean and safe photochemical processes and systems for industry but also to develop systems that can eliminate and cleanse the many devastating toxic agents that are polluting our environment.
This new century will be an age in which humanity will strive for the recovery and preservation of a more natural environment and also for the establishment of clean and safe energy supply technologies. Up until now, environmental pollution and destruction on a global scale as well as the lack of sufficient clean energy have drawn great attention and concern to the vital need for totally new environmentally friendly, ecologically clean chemical technology, materials and processes -- the most important challenge facing chemical scientists for future generations. In this respect, zeolites offer very unique and interesting physicochemical properties such as a pore structure of a molecular scale, ion-exchange capabilities, a strong surface acidity and a unique internal surface topology. It would, therefore, be of great significance to develop well-defined molecular scale catalysts within zeolite cavities and frameworks which would lead to the design of more active and selective photofunctional and photocatalytic systems, particularly systems able to utilise the very abundant solar energy and convert them into safe and useful chemical energy. The central topics of this book is how to utilise photofunctional zeolites for applications in the recovery and preservation of our environment while, at the same time, trying to develop clean and safe energy supply technologies. A vital new era is emerging in the utilisation of the most limitless, clean and efficient energy source -- the sun by applying photofunctional materials. Research on photofunctional zeolites is only the beginning in the harvesting of this vast and powerful energy source not only to develop clean and safe photochemical processes and systems for industry but also to develop systems that can eliminate and cleanse the many devastating toxic agents that are polluting our environment.
This new century will be an age in which humanity will strive for the recovery and preservation of a more natural environment and also for the establishment of clean and safe energy supply technologies. Up until now, environmental pollution and destruction on a global scale as well as the lack of sufficient clean energy have drawn great attention and concern to the vital need for totally new environmentally friendly, ecologically clean chemical technology, materials and processes -- the most important challenge facing chemical scientists for future generations. In this respect, zeolites offer very unique and interesting physicochemical properties such as a pore structure of a molecular scale, ion-exchange capabilities, a strong surface acidity and a unique internal surface topology. It would, therefore, be of great significance to develop well-defined molecular scale catalysts within zeolite cavities and frameworks which would lead to the design of more active and selective photofunctional and photocatalytic systems, particularly systems able to utilise the very abundant solar energy and convert them into safe and useful chemical energy. The central topics of this book is how to utilise photofunctional zeolites for applications in the recovery and preservation of our environment while, at the same time, trying to develop clean and safe energy supply technologies. A vital new era is emerging in the utilisation of the most limitless, clean and efficient energy source -- the sun by applying photofunctional materials. Research on photofunctional zeolites is only the beginning in the harvesting of this vast and powerful energy source not only to develop clean and safe photochemical processes and systems for industry but also to develop systems that can eliminate and cleanse the many devastating toxic agents that are polluting our environment.
This new century will be an age in which humanity will strive for the recovery and preservation of a more natural environment and also for the establishment of clean and safe energy supply technologies. Up until now, environmental pollution and destruction on a global scale as well as the lack of sufficient clean energy have drawn great attention and concern to the vital need for totally new environmentally friendly, ecologically clean chemical technology, materials and processes -- the most important challenge facing chemical scientists for future generations. In this respect, zeolites offer very unique and interesting physicochemical properties such as a pore structure of a molecular scale, ion-exchange capabilities, a strong surface acidity and a unique internal surface topology. It would, therefore, be of great significance to develop well-defined molecular scale catalysts within zeolite cavities and frameworks which would lead to the design of more active and selective photofunctional and photocatalytic systems, particularly systems able to utilise the very abundant solar energy and convert them into safe and useful chemical energy. The central topics of this book is how to utilise photofunctional zeolites for applications in the recovery and preservation of our environment while, at the same time, trying to develop clean and safe energy supply technologies. A vital new era is emerging in the utilisation of the most limitless, clean and efficient energy source -- the sun by applying photofunctional materials. Research on photofunctional zeolites is only the beginning in the harvesting of this vast and powerful energy source not only to develop clean and safe photochemical processes and systems for industry but also to develop systems that can eliminate and cleanse the many devastating toxic agents that are polluting our environment.
This new century will be an age in which humanity will strive for the recovery and preservation of a more natural environment and also for the establishment of clean and safe energy supply technologies. Up until now, environmental pollution and destruction on a global scale as well as the lack of sufficient clean energy have drawn great attention and concern to the vital need for totally new environmentally friendly, ecologically clean chemical technology, materials and processes -- the most important challenge facing chemical scientists for future generations. In this respect, zeolites offer very unique and interesting physicochemical properties such as a pore structure of a molecular scale, ion-exchange capabilities, a strong surface acidity and a unique internal surface topology. It would, therefore, be of great significance to develop well-defined molecular scale catalysts within zeolite cavities and frameworks which would lead to the design of more active and selective photofunctional and photocatalytic systems, particularly systems able to utilise the very abundant solar energy and convert them into safe and useful chemical energy. The central topics of this book is how to utilise photofunctional zeolites for applications in the recovery and preservation of our environment while, at the same time, trying to develop clean and safe energy supply technologies. A vital new era is emerging in the utilisation of the most limitless, clean and efficient energy source -- the sun by applying photofunctional materials. Research on photofunctional zeolites is only the beginning in the harvesting of this vast and powerful energy source not only to develop clean and safe photochemical processes and systems for industry but also to develop systems that can eliminate and cleanse the many devastating toxic agents that are polluting our environment.
This new century will be an age in which humanity will strive for the recovery and preservation of a more natural environment and also for the establishment of clean and safe energy supply technologies. Up until now, environmental pollution and destruction on a global scale as well as the lack of sufficient clean energy have drawn great attention and concern to the vital need for totally new environmentally friendly, ecologically clean chemical technology, materials and processes -- the most important challenge facing chemical scientists for future generations. In this respect, zeolites offer very unique and interesting physicochemical properties such as a pore structure of a molecular scale, ion-exchange capabilities, a strong surface acidity and a unique internal surface topology. It would, therefore, be of great significance to develop well-defined molecular scale catalysts within zeolite cavities and frameworks which would lead to the design of more active and selective photofunctional and photocatalytic systems, particularly systems able to utilise the very abundant solar energy and convert them into safe and useful chemical energy. The central topics of this book is how to utilise photofunctional zeolites for applications in the recovery and preservation of our environment while, at the same time, trying to develop clean and safe energy supply technologies. A vital new era is emerging in the utilisation of the most limitless, clean and efficient energy source -- the sun by applying photofunctional materials. Research on photofunctional zeolites is only the beginning in the harvesting of this vast and powerful energy source not only to develop clean and safe photochemical processes and systems for industry but also to develop systems that can eliminate and cleanse the many devastating toxic agents that are polluting our environment.
This new century will be an age in which humanity will strive for the recovery and preservation of a more natural environment and also for the establishment of clean and safe energy supply technologies. Up until now, environmental pollution and destruction on a global scale as well as the lack of sufficient clean energy have drawn great attention and concern to the vital need for totally new environmentally friendly, ecologically clean chemical technology, materials and processes -- the most important challenge facing chemical scientists for future generations. In this respect, zeolites offer very unique and interesting physicochemical properties such as a pore structure of a molecular scale, ion-exchange capabilities, a strong surface acidity and a unique internal surface topology. It would, therefore, be of great significance to develop well-defined molecular scale catalysts within zeolite cavities and frameworks which would lead to the design of more active and selective photofunctional and photocatalytic systems, particularly systems able to utilise the very abundant solar energy and convert them into safe and useful chemical energy. The central topics of this book is how to utilise photofunctional zeolites for applications in the recovery and preservation of our environment while, at the same time, trying to develop clean and safe energy supply technologies. A vital new era is emerging in the utilisation of the most limitless, clean and efficient energy source -- the sun by applying photofunctional materials. Research on photofunctional zeolites is only the beginning in the harvesting of this vast and powerful energy source not only to develop clean and safe photochemical processes and systems for industry but also to develop systems that can eliminate and cleanse the many devastating toxic agents that are polluting our environment.
This new century will be an age in which humanity will strive for the recovery and preservation of a more natural environment and also for the establishment of clean and safe energy supply technologies. Up until now, environmental pollution and destruction on a global scale as well as the lack of sufficient clean energy have drawn great attention and concern to the vital need for totally new environmentally friendly, ecologically clean chemical technology, materials and processes -- the most important challenge facing chemical scientists for future generations. In this respect, zeolites offer very unique and interesting physicochemical properties such as a pore structure of a molecular scale, ion-exchange capabilities, a strong surface acidity and a unique internal surface topology. It would, therefore, be of great significance to develop well-defined molecular scale catalysts within zeolite cavities and frameworks which would lead to the design of more active and selective photofunctional and photocatalytic systems, particularly systems able to utilise the very abundant solar energy and convert them into safe and useful chemical energy. The central topics of this book is how to utilise photofunctional zeolites for applications in the recovery and preservation of our environment while, at the same time, trying to develop clean and safe energy supply technologies. A vital new era is emerging in the utilisation of the most limitless, clean and efficient energy source -- the sun by applying photofunctional materials. Research on photofunctional zeolites is only the beginning in the harvesting of this vast and powerful energy source not only to develop clean and safe photochemical processes and systems for industry but also to develop systems that can eliminate and cleanse the many devastating toxic agents that are polluting our environment.
This new century will be an age in which humanity will strive for the recovery and preservation of a more natural environment and also for the establishment of clean and safe energy supply technologies. Up until now, environmental pollution and destruction on a global scale as well as the lack of sufficient clean energy have drawn great attention and concern to the vital need for totally new environmentally friendly, ecologically clean chemical technology, materials and processes -- the most important challenge facing chemical scientists for future generations. In this respect, zeolites offer very unique and interesting physicochemical properties such as a pore structure of a molecular scale, ion-exchange capabilities, a strong surface acidity and a unique internal surface topology. It would, therefore, be of great significance to develop well-defined molecular scale catalysts within zeolite cavities and frameworks which would lead to the design of more active and selective photofunctional and photocatalytic systems, particularly systems able to utilise the very abundant solar energy and convert them into safe and useful chemical energy. The central topics of this book is how to utilise photofunctional zeolites for applications in the recovery and preservation of our environment while, at the same time, trying to develop clean and safe energy supply technologies. A vital new era is emerging in the utilisation of the most limitless, clean and efficient energy source -- the sun by applying photofunctional materials. Research on photofunctional zeolites is only the beginning in the harvesting of this vast and powerful energy source not only to develop clean and safe photochemical processes and systems for industry but also to develop systems that can eliminate and cleanse the many devastating toxic agents that are polluting our environment.
This new century will be an age in which humanity will strive for the recovery and preservation of a more natural environment and also for the establishment of clean and safe energy supply technologies. Up until now, environmental pollution and destruction on a global scale as well as the lack of sufficient clean energy have drawn great attention and concern to the vital need for totally new environmentally friendly, ecologically clean chemical technology, materials and processes -- the most important challenge facing chemical scientists for future generations. In this respect, zeolites offer very unique and interesting physicochemical properties such as a pore structure of a molecular scale, ion-exchange capabilities, a strong surface acidity and a unique internal surface topology. It would, therefore, be of great significance to develop well-defined molecular scale catalysts within zeolite cavities and frameworks which would lead to the design of more active and selective photofunctional and photocatalytic systems, particularly systems able to utilise the very abundant solar energy and convert them into safe and useful chemical energy. The central topics of this book is how to utilise photofunctional zeolites for applications in the recovery and preservation of our environment while, at the same time, trying to develop clean and safe energy supply technologies. A vital new era is emerging in the utilisation of the most limitless, clean and efficient energy source -- the sun by applying photofunctional materials. Research on photofunctional zeolites is only the beginning in the harvesting of this vast and powerful energy source not only to develop clean and safe photochemical processes and systems for industry but also to develop systems that can eliminate and cleanse the many devastating toxic agents that are polluting our environment.
This new century will be an age in which humanity will strive for the recovery and preservation of a more natural environment and also for the establishment of clean and safe energy supply technologies. Up until now, environmental pollution and destruction on a global scale as well as the lack of sufficient clean energy have drawn great attention and concern to the vital need for totally new environmentally friendly, ecologically clean chemical technology, materials and processes -- the most important challenge facing chemical scientists for future generations. In this respect, zeolites offer very unique and interesting physicochemical properties such as a pore structure of a molecular scale, ion-exchange capabilities, a strong surface acidity and a unique internal surface topology. It would, therefore, be of great significance to develop well-defined molecular scale catalysts within zeolite cavities and frameworks which would lead to the design of more active and selective photofunctional and photocatalytic systems, particularly systems able to utilise the very abundant solar energy and convert them into safe and useful chemical energy. The central topics of this book is how to utilise photofunctional zeolites for applications in the recovery and preservation of our environment while, at the same time, trying to develop clean and safe energy supply technologies. A vital new era is emerging in the utilisation of the most limitless, clean and efficient energy source -- the sun by applying photofunctional materials. Research on photofunctional zeolites is only the beginning in the harvesting of this vast and powerful energy source not only to develop clean and safe photochemical processes and systems for industry but also to develop systems that can eliminate and cleanse the many devastating toxic agents that are polluting our environment.
This new century will be an age in which humanity will strive for the recovery and preservation of a more natural environment and also for the establishment of clean and safe energy supply technologies. Up until now, environmental pollution and destruction on a global scale as well as the lack of sufficient clean energy have drawn great attention and concern to the vital need for totally new environmentally friendly, ecologically clean chemical technology, materials and processes -- the most important challenge facing chemical scientists for future generations. In this respect, zeolites offer very unique and interesting physicochemical properties such as a pore structure of a molecular scale, ion-exchange capabilities, a strong surface acidity and a unique internal surface topology. It would, therefore, be of great significance to develop well-defined molecular scale catalysts within zeolite cavities and frameworks which would lead to the design of more active and selective photofunctional and photocatalytic systems, particularly systems able to utilise the very abundant solar energy and convert them into safe and useful chemical energy. The central topics of this book is how to utilise photofunctional zeolites for applications in the recovery and preservation of our environment while, at the same time, trying to develop clean and safe energy supply technologies. A vital new era is emerging in the utilisation of the most limitless, clean and efficient energy source -- the sun by applying photofunctional materials. Research on photofunctional zeolites is only the beginning in the harvesting of this vast and powerful energy source not only to develop clean and safe photochemical processes and systems for industry but also to develop systems that can eliminate and cleanse the many devastating toxic agents that are polluting our environment.
This new century will be an age in which humanity will strive for the recovery and preservation of a more natural environment and also for the establishment of clean and safe energy supply technologies. Up until now, environmental pollution and destruction on a global scale as well as the lack of sufficient clean energy have drawn great attention and concern to the vital need for totally new environmentally friendly, ecologically clean chemical technology, materials and processes -- the most important challenge facing chemical scientists for future generations. In this respect, zeolites offer very unique and interesting physicochemical properties such as a pore structure of a molecular scale, ion-exchange capabilities, a strong surface acidity and a unique internal surface topology. It would, therefore, be of great significance to develop well-defined molecular scale catalysts within zeolite cavities and frameworks which would lead to the design of more active and selective photofunctional and photocatalytic systems, particularly systems able to utilise the very abundant solar energy and convert them into safe and useful chemical energy. The central topics of this book is how to utilise photofunctional zeolites for applications in the recovery and preservation of our environment while, at the same time, trying to develop clean and safe energy supply technologies. A vital new era is emerging in the utilisation of the most limitless, clean and efficient energy source -- the sun by applying photofunctional materials. Research on photofunctional zeolites is only the beginning in the harvesting of this vast and powerful energy source not only to develop clean and safe photochemical processes and systems for industry but also to develop systems that can eliminate and cleanse the many devastating toxic agents that are polluting our environment.
This new century will be an age in which humanity will strive for the recovery and preservation of a more natural environment and also for the establishment of clean and safe energy supply technologies. Up until now, environmental pollution and destruction on a global scale as well as the lack of sufficient clean energy have drawn great attention and concern to the vital need for totally new environmentally friendly, ecologically clean chemical technology, materials and processes -- the most important challenge facing chemical scientists for future generations. In this respect, zeolites offer very unique and interesting physicochemical properties such as a pore structure of a molecular scale, ion-exchange capabilities, a strong surface acidity and a unique internal surface topology. It would, therefore, be of great significance to develop well-defined molecular scale catalysts within zeolite cavities and frameworks which would lead to the design of more active and selective photofunctional and photocatalytic systems, particularly systems able to utilise the very abundant solar energy and convert them into safe and useful chemical energy. The central topics of this book is how to utilise photofunctional zeolites for applications in the recovery and preservation of our environment while, at the same time, trying to develop clean and safe energy supply technologies. A vital new era is emerging in the utilisation of the most limitless, clean and efficient energy source -- the sun by applying photofunctional materials. Research on photofunctional zeolites is only the beginning in the harvesting of this vast and powerful energy source not only to develop clean and safe photochemical processes and systems for industry but also to develop systems that can eliminate and cleanse the many devastating toxic agents that are polluting our environment.
This new century will be an age in which humanity will strive for the recovery and preservation of a more natural environment and also for the establishment of clean and safe energy supply technologies. Up until now, environmental pollution and destruction on a global scale as well as the lack of sufficient clean energy have drawn great attention and concern to the vital need for totally new environmentally friendly, ecologically clean chemical technology, materials and processes -- the most important challenge facing chemical scientists for future generations. In this respect, zeolites offer very unique and interesting physicochemical properties such as a pore structure of a molecular scale, ion-exchange capabilities, a strong surface acidity and a unique internal surface topology. It would, therefore, be of great significance to develop well-defined molecular scale catalysts within zeolite cavities and frameworks which would lead to the design of more active and selective photofunctional and photocatalytic systems, particularly systems able to utilise the very abundant solar energy and convert them into safe and useful chemical energy. The central topics of this book is how to utilise photofunctional zeolites for applications in the recovery and preservation of our environment while, at the same time, trying to develop clean and safe energy supply technologies. A vital new era is emerging in the utilisation of the most limitless, clean and efficient energy source -- the sun by applying photofunctional materials. Research on photofunctional zeolites is only the beginning in the harvesting of this vast and powerful energy source not only to develop clean and safe photochemical processes and systems for industry but also to develop systems that can eliminate and cleanse the many devastating toxic agents that are polluting our environment.
This new century will be an age in which humanity will strive for the recovery and preservation of a more natural environment and also for the establishment of clean and safe energy supply technologies. Up until now, environmental pollution and destruction on a global scale as well as the lack of sufficient clean energy have drawn great attention and concern to the vital need for totally new environmentally friendly, ecologically clean chemical technology, materials and processes -- the most important challenge facing chemical scientists for future generations. In this respect, zeolites offer very unique and interesting physicochemical properties such as a pore structure of a molecular scale, ion-exchange capabilities, a strong surface acidity and a unique internal surface topology. It would, therefore, be of great significance to develop well-defined molecular scale catalysts within zeolite cavities and frameworks which would lead to the design of more active and selective photofunctional and photocatalytic systems, particularly systems able to utilise the very abundant solar energy and convert them into safe and useful chemical energy. The central topics of this book is how to utilise photofunctional zeolites for applications in the recovery and preservation of our environment while, at the same time, trying to develop clean and safe energy supply technologies. A vital new era is emerging in the utilisation of the most limitless, clean and efficient energy source -- the sun by applying photofunctional materials. Research on photofunctional zeolites is only the beginning in the harvesting of this vast and powerful energy source not only to develop clean and safe photochemical processes and systems for industry but also to develop systems that can eliminate and cleanse the many devastating toxic agents that are polluting our environment.
This new century will be an age in which humanity will strive for the recovery and preservation of a more natural environment and also for the establishment of clean and safe energy supply technologies. Up until now, environmental pollution and destruction on a global scale as well as the lack of sufficient clean energy have drawn great attention and concern to the vital need for totally new environmentally friendly, ecologically clean chemical technology, materials and processes -- the most important challenge facing chemical scientists for future generations. In this respect, zeolites offer very unique and interesting physicochemical properties such as a pore structure of a molecular scale, ion-exchange capabilities, a strong surface acidity and a unique internal surface topology. It would, therefore, be of great significance to develop well-defined molecular scale catalysts within zeolite cavities and frameworks which would lead to the design of more active and selective photofunctional and photocatalytic systems, particularly systems able to utilise the very abundant solar energy and convert them into safe and useful chemical energy. The central topics of this book is how to utilise photofunctional zeolites for applications in the recovery and preservation of our environment while, at the same time, trying to develop clean and safe energy supply technologies. A vital new era is emerging in the utilisation of the most limitless, clean and efficient energy source -- the sun by applying photofunctional materials. Research on photofunctional zeolites is only the beginning in the harvesting of this vast and powerful energy source not only to develop clean and safe photochemical processes and systems for industry but also to develop systems that can eliminate and cleanse the many devastating toxic agents that are polluting our environment.
This new century will be an age in which humanity will strive for the recovery and preservation of a more natural environment and also for the establishment of clean and safe energy supply technologies. Up until now, environmental pollution and destruction on a global scale as well as the lack of sufficient clean energy have drawn great attention and concern to the vital need for totally new environmentally friendly, ecologically clean chemical technology, materials and processes -- the most important challenge facing chemical scientists for future generations. In this respect, zeolites offer very unique and interesting physicochemical properties such as a pore structure of a molecular scale, ion-exchange capabilities, a strong surface acidity and a unique internal surface topology. It would, therefore, be of great significance to develop well-defined molecular scale catalysts within zeolite cavities and frameworks which would lead to the design of more active and selective photofunctional and photocatalytic systems, particularly systems able to utilise the very abundant solar energy and convert them into safe and useful chemical energy. The central topics of this book is how to utilise photofunctional zeolites for applications in the recovery and preservation of our environment while, at the same time, trying to develop clean and safe energy supply technologies. A vital new era is emerging in the utilisation of the most limitless, clean and efficient energy source -- the sun by applying photofunctional materials. Research on photofunctional zeolites is only the beginning in the harvesting of this vast and powerful energy source not only to develop clean and safe photochemical processes and systems for industry but also to develop systems that can eliminate and cleanse the many devastating toxic agents that are polluting our environment.
This new century will be an age in which humanity will strive for the recovery and preservation of a more natural environment and also for the establishment of clean and safe energy supply technologies. Up until now, environmental pollution and destruction on a global scale as well as the lack of sufficient clean energy have drawn great attention and concern to the vital need for totally new environmentally friendly, ecologically clean chemical technology, materials and processes -- the most important challenge facing chemical scientists for future generations. In this respect, zeolites offer very unique and interesting physicochemical properties such as a pore structure of a molecular scale, ion-exchange capabilities, a strong surface acidity and a unique internal surface topology. It would, therefore, be of great significance to develop well-defined molecular scale catalysts within zeolite cavities and frameworks which would lead to the design of more active and selective photofunctional and photocatalytic systems, particularly systems able to utilise the very abundant solar energy and convert them into safe and useful chemical energy. The central topics of this book is how to utilise photofunctional zeolites for applications in the recovery and preservation of our environment while, at the same time, trying to develop clean and safe energy supply technologies. A vital new era is emerging in the utilisation of the most limitless, clean and efficient energy source -- the sun by applying photofunctional materials. Research on photofunctional zeolites is only the beginning in the harvesting of this vast and powerful energy source not only to develop clean and safe photochemical processes and systems for industry but also to develop systems that can eliminate and cleanse the many devastating toxic agents that are polluting our environment.
This new century will be an age in which humanity will strive for the recovery and preservation of a more natural environment and also for the establishment of clean and safe energy supply technologies. Up until now, environmental pollution and destruction on a global scale as well as the lack of sufficient clean energy have drawn great attention and concern to the vital need for totally new environmentally friendly, ecologically clean chemical technology, materials and processes -- the most important challenge facing chemical scientists for future generations. In this respect, zeolites offer very unique and interesting physicochemical properties such as a pore structure of a molecular scale, ion-exchange capabilities, a strong surface acidity and a unique internal surface topology. It would, therefore, be of great significance to develop well-defined molecular scale catalysts within zeolite cavities and frameworks which would lead to the design of more active and selective photofunctional and photocatalytic systems, particularly systems able to utilise the very abundant solar energy and convert them into safe and useful chemical energy. The central topics of this book is how to utilise photofunctional zeolites for applications in the recovery and preservation of our environment while, at the same time, trying to develop clean and safe energy supply technologies. A vital new era is emerging in the utilisation of the most limitless, clean and efficient energy source -- the sun by applying photofunctional materials. Research on photofunctional zeolites is only the beginning in the harvesting of this vast and powerful energy source not only to develop clean and safe photochemical processes and systems for industry but also to develop systems that can eliminate and cleanse the many devastating toxic agents that are polluting our environment.
This new century will be an age in which humanity will strive for the recovery and preservation of a more natural environment and also for the establishment of clean and safe energy supply technologies. Up until now, environmental pollution and destruction on a global scale as well as the lack of sufficient clean energy have drawn great attention and concern to the vital need for totally new environmentally friendly, ecologically clean chemical technology, materials and processes -- the most important challenge facing chemical scientists for future generations. In this respect, zeolites offer very unique and interesting physicochemical properties such as a pore structure of a molecular scale, ion-exchange capabilities, a strong surface acidity and a unique internal surface topology. It would, therefore, be of great significance to develop well-defined molecular scale catalysts within zeolite cavities and frameworks which would lead to the design of more active and selective photofunctional and photocatalytic systems, particularly systems able to utilise the very abundant solar energy and convert them into safe and useful chemical energy. The central topics of this book is how to utilise photofunctional zeolites for applications in the recovery and preservation of our environment while, at the same time, trying to develop clean and safe energy supply technologies. A vital new era is emerging in the utilisation of the most limitless, clean and efficient energy source -- the sun by applying photofunctional materials. Research on photofunctional zeolites is only the beginning in the harvesting of this vast and powerful energy source not only to develop clean and safe photochemical processes and systems for industry but also to develop systems that can eliminate and cleanse the many devastating toxic agents that are polluting our environment.
This new century will be an age in which humanity will strive for the recovery and preservation of a more natural environment and also for the establishment of clean and safe energy supply technologies. Up until now, environmental pollution and destruction on a global scale as well as the lack of sufficient clean energy have drawn great attention and concern to the vital need for totally new environmentally friendly, ecologically clean chemical technology, materials and processes -- the most important challenge facing chemical scientists for future generations. In this respect, zeolites offer very unique and interesting physicochemical properties such as a pore structure of a molecular scale, ion-exchange capabilities, a strong surface acidity and a unique internal surface topology. It would, therefore, be of great significance to develop well-defined molecular scale catalysts within zeolite cavities and frameworks which would lead to the design of more active and selective photofunctional and photocatalytic systems, particularly systems able to utilise the very abundant solar energy and convert them into safe and useful chemical energy. The central topics of this book is how to utilise photofunctional zeolites for applications in the recovery and preservation of our environment while, at the same time, trying to develop clean and safe energy supply technologies. A vital new era is emerging in the utilisation of the most limitless, clean and efficient energy source -- the sun by applying photofunctional materials. Research on photofunctional zeolites is only the beginning in the harvesting of this vast and powerful energy source not only to develop clean and safe photochemical processes and systems for industry but also to develop systems that can eliminate and cleanse the many devastating toxic agents that are polluting our environment.
This new century will be an age in which humanity will strive for the recovery and preservation of a more natural environment and also for the establishment of clean and safe energy supply technologies. Up until now, environmental pollution and destruction on a global scale as well as the lack of sufficient clean energy have drawn great attention and concern to the vital need for totally new environmentally friendly, ecologically clean chemical technology, materials and processes -- the most important challenge facing chemical scientists for future generations. In this respect, zeolites offer very unique and interesting physicochemical properties such as a pore structure of a molecular scale, ion-exchange capabilities, a strong surface acidity and a unique internal surface topology. It would, therefore, be of great significance to develop well-defined molecular scale catalysts within zeolite cavities and frameworks which would lead to the design of more active and selective photofunctional and photocatalytic systems, particularly systems able to utilise the very abundant solar energy and convert them into safe and useful chemical energy. The central topics of this book is how to utilise photofunctional zeolites for applications in the recovery and preservation of our environment while, at the same time, trying to develop clean and safe energy supply technologies. A vital new era is emerging in the utilisation of the most limitless, clean and efficient energy source -- the sun by applying photofunctional materials. Research on photofunctional zeolites is only the beginning in the harvesting of this vast and powerful energy source not only to develop clean and safe photochemical processes and systems for industry but also to develop systems that can eliminate and cleanse the many devastating toxic agents that are polluting our environment.
This new century will be an age in which humanity will strive for the recovery and preservation of a more natural environment and also for the establishment of clean and safe energy supply technologies. Up until now, environmental pollution and destruction on a global scale as well as the lack of sufficient clean energy have drawn great attention and concern to the vital need for totally new environmentally friendly, ecologically clean chemical technology, materials and processes -- the most important challenge facing chemical scientists for future generations. In this respect, zeolites offer very unique and interesting physicochemical properties such as a pore structure of a molecular scale, ion-exchange capabilities, a strong surface acidity and a unique internal surface topology. It would, therefore, be of great significance to develop well-defined molecular scale catalysts within zeolite cavities and frameworks which would lead to the design of more active and selective photofunctional and photocatalytic systems, particularly systems able to utilise the very abundant solar energy and convert them into safe and useful chemical energy. The central topics of this book is how to utilise photofunctional zeolites for applications in the recovery and preservation of our environment while, at the same time, trying to develop clean and safe energy supply technologies. A vital new era is emerging in the utilisation of the most limitless, clean and efficient energy source -- the sun by applying photofunctional materials. Research on photofunctional zeolites is only the beginning in the harvesting of this vast and powerful energy source not only to develop clean and safe photochemical processes and systems for industry but also to develop systems that can eliminate and cleanse the many devastating toxic agents that are polluting our environment.
This new century will be an age in which humanity will strive for the recovery and preservation of a more natural environment and also for the establishment of clean and safe energy supply technologies. Up until now, environmental pollution and destruction on a global scale as well as the lack of sufficient clean energy have drawn great attention and concern to the vital need for totally new environmentally friendly, ecologically clean chemical technology, materials and processes -- the most important challenge facing chemical scientists for future generations. In this respect, zeolites offer very unique and interesting physicochemical properties such as a pore structure of a molecular scale, ion-exchange capabilities, a strong surface acidity and a unique internal surface topology. It would, therefore, be of great significance to develop well-defined molecular scale catalysts within zeolite cavities and frameworks which would lead to the design of more active and selective photofunctional and photocatalytic systems, particularly systems able to utilise the very abundant solar energy and convert them into safe and useful chemical energy. The central topics of this book is how to utilise photofunctional zeolites for applications in the recovery and preservation of our environment while, at the same time, trying to develop clean and safe energy supply technologies. A vital new era is emerging in the utilisation of the most limitless, clean and efficient energy source -- the sun by applying photofunctional materials. Research on photofunctional zeolites is only the beginning in the harvesting of this vast and powerful energy source not only to develop clean and safe photochemical processes and systems for industry but also to develop systems that can eliminate and cleanse the many devastating toxic agents that are polluting our environment.
This new century will be an age in which humanity will strive for the recovery and preservation of a more natural environment and also for the establishment of clean and safe energy supply technologies. Up until now, environmental pollution and destruction on a global scale as well as the lack of sufficient clean energy have drawn great attention and concern to the vital need for totally new environmentally friendly, ecologically clean chemical technology, materials and processes -- the most important challenge facing chemical scientists for future generations. In this respect, zeolites offer very unique and interesting physicochemical properties such as a pore structure of a molecular scale, ion-exchange capabilities, a strong surface acidity and a unique internal surface topology. It would, therefore, be of great significance to develop well-defined molecular scale catalysts within zeolite cavities and frameworks which would lead to the design of more active and selective photofunctional and photocatalytic systems, particularly systems able to utilise the very abundant solar energy and convert them into safe and useful chemical energy. The central topics of this book is how to utilise photofunctional zeolites for applications in the recovery and preservation of our environment while, at the same time, trying to develop clean and safe energy supply technologies. A vital new era is emerging in the utilisation of the most limitless, clean and efficient energy source -- the sun by applying photofunctional materials. Research on photofunctional zeolites is only the beginning in the harvesting of this vast and powerful energy source not only to develop clean and safe photochemical processes and systems for industry but also to develop systems that can eliminate and cleanse the many devastating toxic agents that are polluting our environment.
This new century will be an age in which humanity will strive for the recovery and preservation of a more natural environment and also for the establishment of clean and safe energy supply technologies. Up until now, environmental pollution and destruction on a global scale as well as the lack of sufficient clean energy have drawn great attention and concern to the vital need for totally new environmentally friendly, ecologically clean chemical technology, materials and processes -- the most important challenge facing chemical scientists for future generations. In this respect, zeolites offer very unique and interesting physicochemical properties such as a pore structure of a molecular scale, ion-exchange capabilities, a strong surface acidity and a unique internal surface topology. It would, therefore, be of great significance to develop well-defined molecular scale catalysts within zeolite cavities and frameworks which would lead to the design of more active and selective photofunctional and photocatalytic systems, particularly systems able to utilise the very abundant solar energy and convert them into safe and useful chemical energy. The central topics of this book is how to utilise photofunctional zeolites for applications in the recovery and preservation of our environment while, at the same time, trying to develop clean and safe energy supply technologies. A vital new era is emerging in the utilisation of the most limitless, clean and efficient energy source -- the sun by applying photofunctional materials. Research on photofunctional zeolites is only the beginning in the harvesting of this vast and powerful energy source not only to develop clean and safe photochemical processes and systems for industry but also to develop systems that can eliminate and cleanse the many devastating toxic agents that are polluting our environment.
This new century will be an age in which humanity will strive for the recovery and preservation of a more natural environment and also for the establishment of clean and safe energy supply technologies. Up until now, environmental pollution and destruction on a global scale as well as the lack of sufficient clean energy have drawn great attention and concern to the vital need for totally new environmentally friendly, ecologically clean chemical technology, materials and processes -- the most important challenge facing chemical scientists for future generations. In this respect, zeolites offer very unique and interesting physicochemical properties such as a pore structure of a molecular scale, ion-exchange capabilities, a strong surface acidity and a unique internal surface topology. It would, therefore, be of great significance to develop well-defined molecular scale catalysts within zeolite cavities and frameworks which would lead to the design of more active and selective photofunctional and photocatalytic systems, particularly systems able to utilise the very abundant solar energy and convert them into safe and useful chemical energy. The central topics of this book is how to utilise photofunctional zeolites for applications in the recovery and preservation of our environment while, at the same time, trying to develop clean and safe energy supply technologies. A vital new era is emerging in the utilisation of the most limitless, clean and efficient energy source -- the sun by applying photofunctional materials. Research on photofunctional zeolites is only the beginning in the harvesting of this vast and powerful energy source not only to develop clean and safe photochemical processes and systems for industry but also to develop systems that can eliminate and cleanse the many devastating toxic agents that are polluting our environment.
This new century will be an age in which humanity will strive for the recovery and preservation of a more natural environment and also for the establishment of clean and safe energy supply technologies. Up until now, environmental pollution and destruction on a global scale as well as the lack of sufficient clean energy have drawn great attention and concern to the vital need for totally new environmentally friendly, ecologically clean chemical technology, materials and processes -- the most important challenge facing chemical scientists for future generations. In this respect, zeolites offer very unique and interesting physicochemical properties such as a pore structure of a molecular scale, ion-exchange capabilities, a strong surface acidity and a unique internal surface topology. It would, therefore, be of great significance to develop well-defined molecular scale catalysts within zeolite cavities and frameworks which would lead to the design of more active and selective photofunctional and photocatalytic systems, particularly systems able to utilise the very abundant solar energy and convert them into safe and useful chemical energy. The central topics of this book is how to utilise photofunctional zeolites for applications in the recovery and preservation of our environment while, at the same time, trying to develop clean and safe energy supply technologies. A vital new era is emerging in the utilisation of the most limitless, clean and efficient energy source -- the sun by applying photofunctional materials. Research on photofunctional zeolites is only the beginning in the harvesting of this vast and powerful energy source not only to develop clean and safe photochemical processes and systems for industry but also to develop systems that can eliminate and cleanse the many devastating toxic agents that are polluting our environment.
This new century will be an age in which humanity will strive for the recovery and preservation of a more natural environment and also for the establishment of clean and safe energy supply technologies. Up until now, environmental pollution and destruction on a global scale as well as the lack of sufficient clean energy have drawn great attention and concern to the vital need for totally new environmentally friendly, ecologically clean chemical technology, materials and processes -- the most important challenge facing chemical scientists for future generations. In this respect, zeolites offer very unique and interesting physicochemical properties such as a pore structure of a molecular scale, ion-exchange capabilities, a strong surface acidity and a unique internal surface topology. It would, therefore, be of great significance to develop well-defined molecular scale catalysts within zeolite cavities and frameworks which would lead to the design of more active and selective photofunctional and photocatalytic systems, particularly systems able to utilise the very abundant solar energy and convert them into safe and useful chemical energy. The central topics of this book is how to utilise photofunctional zeolites for applications in the recovery and preservation of our environment while, at the same time, trying to develop clean and safe energy supply technologies. A vital new era is emerging in the utilisation of the most limitless, clean and efficient energy source -- the sun by applying photofunctional materials. Research on photofunctional zeolites is only the beginning in the harvesting of this vast and powerful energy source not only to develop clean and safe photochemical processes and systems for industry but also to develop systems that can eliminate and cleanse the many devastating toxic agents that are polluting our environment.

Get Photofunctional Zeolites by at the best price and quality guranteed only at Werezi Africa largest book ecommerce store. The book was published by Nova Science Publishers Inc and it has pages. Enjoy Shopping Best Offers & Deals on books Online from Werezi - Receive at your doorstep - Fast Delivery - Secure mode of Payment

Customer Reviews

Based on 0 reviews

Mind, Body, & Spirit