Search

Categories

    • categories-img Jacket, Women
    • categories-img Woolend Jacket
    • categories-img Western denim
    • categories-img Mini Dresss
    • categories-img Jacket, Women
    • categories-img Woolend Jacket
    • categories-img Western denim
    • categories-img Mini Dresss
    • categories-img Jacket, Women
    • categories-img Woolend Jacket
    • categories-img Western denim
    • categories-img Mini Dresss
    • categories-img Jacket, Women
    • categories-img Woolend Jacket
    • categories-img Western denim
    • categories-img Mini Dresss
    • categories-img Jacket, Women
    • categories-img Woolend Jacket
    • categories-img Western denim
    • categories-img Mini Dresss

Filter By Price

$
-
$

Dietary Needs

Top Rated Product

product-img product-img

Modern Chair

$165.00
product-img product-img

Plastic Chair

$165.00
product-img product-img

Design Rooms

$165.00

Brands

  • Wooden
  • Chair
  • Modern
  • Fabric
  • Shoulder
  • Winter
  • Accessories
  • Dress

Welcome and thank you for visiting us. For any query call us on 0799 626 359 or Email [email protected]

Offcanvas Menu Open

Shopping Cart

Africa largest book store

Sub Total:

Search for any Title

Multispectral Image Analysis Using the Object-Oriented Paradigm (Remote Sensing Applications Series)

By: Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author) , Kumar Navulur (Author)

Manufacture on Demand

Ksh 29,150.00

Format: Hardback or Cased Book

ISBN-10: 1420043064

ISBN-13: 9781420043068

Collection / Series: Remote Sensing Applications Series

Collection Type: Publisher collection

Publisher: Taylor & Francis Inc

Imprint: CRC Press Inc

Country of Manufacture: US

Country of Publication: GB

Publication Date: Dec 5th, 2006

Publication Status: Active

Product extent: 204 Pages

Weight: 442.00 grams

Dimensions (height x width x thickness): 23.60 x 15.70 x 1.70 cms

Product Classification / Subject(s): Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics
Applied optics

Choose your Location

Shipping & Delivery

Door Delivery

Delivery fee

Delivery in 10 to 14 days

  • Description

  • Reviews

Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.
Featuring various hands-on examples to provide understanding of this new approach, Multispectral Image Analysis Using the Object-Oriented Paradigm shows how to extract information from remotely sensed data for applications in agriculture, visual simulation, civil government mapping, forestry, fire risk assessment, and more. This bo
Bringing a fresh new perspective to remote sensing, object-based image analysis is a paradigm shift from the traditional pixel-based approach. Featuring various practical examples to provide understanding of this new modus operandi, Multispectral Image Analysis Using the Object-Oriented Paradigm reviews the current image analysis methods and demonstrates advantages to improve information extraction from imagery.

This reference describes traditional image analysis techniques, introduces object-oriented technology, and discusses the benefits of object-based versus pixel-based classification. It examines the creation of object primitives using image segmentation approaches and the use of various techniques for object classification. The author covers image enhancement methods, how to use ancillary data to constrain image segmentation, and concepts of semantic grouping of objects. He concludes by addressing accuracy assessment approaches. The accompanying downloadable resources present sample data that enable the use of different approaches to problem solving.

Integrating remote sensing techniques and GIS analysis, Multispectral Image Analysis Using the Object-Oriented Paradigm distills new tools to extract information from remotely sensed data.

Get Multispectral Image Analysis Using the Object-Oriented Paradigm by at the best price and quality guranteed only at Werezi Africa largest book ecommerce store. The book was published by Taylor & Francis Inc and it has pages. Enjoy Shopping Best Offers & Deals on books Online from Werezi - Receive at your doorstep - Fast Delivery - Secure mode of Payment

Customer Reviews

Based on 0 reviews

Mind, Body, & Spirit