Search

Categories

    • categories-img Jacket, Women
    • categories-img Woolend Jacket
    • categories-img Western denim
    • categories-img Mini Dresss
    • categories-img Jacket, Women
    • categories-img Woolend Jacket
    • categories-img Western denim
    • categories-img Mini Dresss
    • categories-img Jacket, Women
    • categories-img Woolend Jacket
    • categories-img Western denim
    • categories-img Mini Dresss
    • categories-img Jacket, Women
    • categories-img Woolend Jacket
    • categories-img Western denim
    • categories-img Mini Dresss
    • categories-img Jacket, Women
    • categories-img Woolend Jacket
    • categories-img Western denim
    • categories-img Mini Dresss

Filter By Price

$
-
$

Dietary Needs

Top Rated Product

product-img product-img

Modern Chair

$165.00
product-img product-img

Plastic Chair

$165.00
product-img product-img

Design Rooms

$165.00

Brands

  • Wooden
  • Chair
  • Modern
  • Fabric
  • Shoulder
  • Winter
  • Accessories
  • Dress

Welcome and thank you for visiting us. For any query call us on 0799 626 359 or Email [email protected]

Offcanvas Menu Open

Shopping Cart

Africa largest book store

Sub Total:

Search for any Title

Multimodal Learning toward Recommendation

By: Fan Liu (Author) , Liqiang Nie (Author) , Zhenyang Li (Author)

Extended Catalogue

Ksh 20,500.00

Format: Paperback or Softback

ISBN-10: 303183187X

ISBN-13: 9783031831874

Publisher: Springer International Publishing AG

Imprint: Springer International Publishing AG

Country of Manufacture: GB

Country of Publication: GB

Publication Date: Jan 18th, 2025

Publication Status: Active

Product extent: 152 Pages

Choose your Location

Shipping & Delivery

Door Delivery

Delivery fee

Delivery in 10 to 14 days

  • Description

  • Reviews

This book presents an in-depth exploration of multimodal learning toward recommendation, along with a comprehensive survey of the most important research topics and state-of-the-art methods in this area. First, it presents a semantic-guided feature distillation method which employs a teacher-student framework to robustly extract effective recommendation-oriented features from generic multimodal features. Next, it introduces a novel multimodal attentive metric learning method to model user diverse preferences for various items. Then it proposes a disentangled multimodal representation learning recommendation model, which can capture users’ fine-grained attention to different modalities on each factor in user preference modeling. Furthermore, a meta-learning-based multimodal fusion framework is developed to model the various relationships among multimodal information. Building on the success of disentangled representation learning, it further proposes an attribute-driven disentangled representation learning method, which uses attributes to guide the disentanglement process in order to improve the interpretability and controllability of conventional recommendation methods. Finally, the book concludes with future research directions in multimodal learning toward recommendation. The book is suitable for graduate students and researchers who are interested in multimodal learning and recommender systems. The multimodal learning methods presented are also applicable to other retrieval or sorting related research areas, like image retrieval, moment localization, and visual question answering.

This book presents an in-depth exploration of multimodal learning toward recommendation, along with a comprehensive survey of the most important research topics and state-of-the-art methods in this area.

First, it presents a semantic-guided feature distillation method which employs a teacher-student framework to robustly extract effective recommendation-oriented features from generic multimodal features. Next, it introduces a novel multimodal attentive metric learning method to model user diverse preferences for various items. Then it proposes a disentangled multimodal representation learning recommendation model, which can capture users’ fine-grained attention to different modalities on each factor in user preference modeling. Furthermore, a meta-learning-based multimodal fusion framework is developed to model the various relationships among multimodal information. Building on the success of disentangled representation learning, it further proposes an attribute-driven disentangled representation learning method, which uses attributes to guide the disentanglement process in order to improve the interpretability and controllability of conventional recommendation methods. Finally, the book concludes with future research directions in multimodal learning toward recommendation.

The book is suitable for graduate students and researchers who are interested in multimodal learning and recommender systems. The multimodal learning methods presented are also applicable to other retrieval or sorting related research areas, like image retrieval, moment localization, and visual question answering.


Get Multimodal Learning toward Recommendation by at the best price and quality guranteed only at Werezi Africa largest book ecommerce store. The book was published by Springer International Publishing AG and it has pages. Enjoy Shopping Best Offers & Deals on books Online from Werezi - Receive at your doorstep - Fast Delivery - Secure mode of Payment

Customer Reviews

Based on 0 reviews

Mind, Body, & Spirit