Algorithms for Convex Optimization are the workhorses of data-driven, technological advancements in machine learning and artificial intelligence. This concise, modern guide to deriving these algorithms is self-contained and accessible to advanced students, practitioners, and researchers in computer science, operations research, and data science.
In the last few years, Algorithms for Convex Optimization have revolutionized algorithm design, both for discrete and continuous optimization problems. For problems like maximum flow, maximum matching, and submodular function minimization, the fastest algorithms involve essential methods such as gradient descent, mirror descent, interior point methods, and ellipsoid methods. The goal of this self-contained book is to enable researchers and professionals in computer science, data science, and machine learning to gain an in-depth understanding of these algorithms. The text emphasizes how to derive key algorithms for convex optimization from first principles and how to establish precise running time bounds. This modern text explains the success of these algorithms in problems of discrete optimization, as well as how these methods have significantly pushed the state of the art of convex optimization itself.
Get Algorithms for Convex Optimization by at the best price and quality guranteed only at Werezi Africa largest book ecommerce store. The book was published by Cambridge University Press and it has pages. Enjoy Shopping Best Offers & Deals on books Online from Werezi - Receive at your doorstep - Fast Delivery - Secure mode of Payment